A Survey on Inductive Semi-supervised Learning
نویسنده
چکیده
منابع مشابه
Tutorial on Inductive Semi-supervised Learning Methods: with Applicability to Natural Language Processing
Supervised machine learning methods which learn from labelled (or annotated) data are now widely used in many different areas of Computational Linguistics and Natural Language Processing. There are widespread data annotation endeavours but they face problems: there are a large number of languages and annotation is expensive, while at the same time raw text data is plentiful. Semi-supervised lea...
متن کاملCombining ILP with Semi-supervised Learning for Web Page Categorization
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervis...
متن کاملGraph Based Multi-class Semi-supervised Learning Using Gaussian Process
This paper proposes a multi-class semi-supervised learning algorithm of the graph based method. We make use of the Bayesian framework of Gaussian process to solve this problem. We propose the prior based on the normalized graph Laplacian, and introduce a new likelihood based on softmax function model. Both the transductive and inductive problems are regarded as MAP (Maximum A Posterior) problem...
متن کاملSemi-supervised Induction with Basis Functions
Considerable progress was recently made on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabeled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper suggests a space of basis functions to perform semi-supervised inductive learning. As a nice pr...
متن کاملRevisiting Semi-Supervised Learning with Graph Embeddings
We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embedding...
متن کامل